Metamath Proof Explorer


Theorem rerecid

Description: Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025)

Ref Expression
Hypotheses sn-rereccld.a
|- ( ph -> A e. RR )
sn-rereccld.z
|- ( ph -> A =/= 0 )
Assertion rerecid
|- ( ph -> ( A x. ( 1 /R A ) ) = 1 )

Proof

Step Hyp Ref Expression
1 sn-rereccld.a
 |-  ( ph -> A e. RR )
2 sn-rereccld.z
 |-  ( ph -> A =/= 0 )
3 1red
 |-  ( ph -> 1 e. RR )
4 3 1 2 redivcan2d
 |-  ( ph -> ( A x. ( 1 /R A ) ) = 1 )