Description: A cancellation law for division. (Contributed by SN, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | redivcan2d.a | |- ( ph -> A e. RR ) |
|
| redivcan2d.b | |- ( ph -> B e. RR ) |
||
| redivcan2d.z | |- ( ph -> B =/= 0 ) |
||
| Assertion | redivcan2d | |- ( ph -> ( B x. ( A /R B ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivcan2d.a | |- ( ph -> A e. RR ) |
|
| 2 | redivcan2d.b | |- ( ph -> B e. RR ) |
|
| 3 | redivcan2d.z | |- ( ph -> B =/= 0 ) |
|
| 4 | eqidd | |- ( ph -> ( A /R B ) = ( A /R B ) ) |
|
| 5 | 1 2 3 | sn-redivcld | |- ( ph -> ( A /R B ) e. RR ) |
| 6 | 1 5 2 3 | redivmuld | |- ( ph -> ( ( A /R B ) = ( A /R B ) <-> ( B x. ( A /R B ) ) = A ) ) |
| 7 | 4 6 | mpbid | |- ( ph -> ( B x. ( A /R B ) ) = A ) |