Description: A cancellation law for division. (Contributed by SN, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | redivcan2d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| redivcan2d.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| redivcan2d.z | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| Assertion | redivcan2d | ⊢ ( 𝜑 → ( 𝐵 · ( 𝐴 /ℝ 𝐵 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivcan2d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | redivcan2d.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | redivcan2d.z | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( 𝐴 /ℝ 𝐵 ) = ( 𝐴 /ℝ 𝐵 ) ) | |
| 5 | 1 2 3 | sn-redivcld | ⊢ ( 𝜑 → ( 𝐴 /ℝ 𝐵 ) ∈ ℝ ) |
| 6 | 1 5 2 3 | redivmuld | ⊢ ( 𝜑 → ( ( 𝐴 /ℝ 𝐵 ) = ( 𝐴 /ℝ 𝐵 ) ↔ ( 𝐵 · ( 𝐴 /ℝ 𝐵 ) ) = 𝐴 ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝜑 → ( 𝐵 · ( 𝐴 /ℝ 𝐵 ) ) = 𝐴 ) |