| Step |
Hyp |
Ref |
Expression |
| 1 |
|
redivmuld.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
redivmuld.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
redivmuld.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
redivmuld.z |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 5 |
1 3 4
|
redivvald |
⊢ ( 𝜑 → ( 𝐴 /ℝ 𝐶 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐶 · 𝑥 ) = 𝐴 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐴 /ℝ 𝐶 ) = 𝐵 ↔ ( ℩ 𝑥 ∈ ℝ ( 𝐶 · 𝑥 ) = 𝐴 ) = 𝐵 ) ) |
| 7 |
1 3 4
|
rediveud |
⊢ ( 𝜑 → ∃! 𝑥 ∈ ℝ ( 𝐶 · 𝑥 ) = 𝐴 ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝐵 ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 · 𝑥 ) = 𝐴 ↔ ( 𝐶 · 𝐵 ) = 𝐴 ) ) |
| 10 |
9
|
riota2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ∃! 𝑥 ∈ ℝ ( 𝐶 · 𝑥 ) = 𝐴 ) → ( ( 𝐶 · 𝐵 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℝ ( 𝐶 · 𝑥 ) = 𝐴 ) = 𝐵 ) ) |
| 11 |
2 7 10
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℝ ( 𝐶 · 𝑥 ) = 𝐴 ) = 𝐵 ) ) |
| 12 |
6 11
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐴 /ℝ 𝐶 ) = 𝐵 ↔ ( 𝐶 · 𝐵 ) = 𝐴 ) ) |