| Step |
Hyp |
Ref |
Expression |
| 1 |
|
redivmuld.a |
|- ( ph -> A e. RR ) |
| 2 |
|
redivmuld.b |
|- ( ph -> B e. RR ) |
| 3 |
|
redivmuld.c |
|- ( ph -> C e. RR ) |
| 4 |
|
redivmuld.z |
|- ( ph -> C =/= 0 ) |
| 5 |
1 3 4
|
redivvald |
|- ( ph -> ( A /R C ) = ( iota_ x e. RR ( C x. x ) = A ) ) |
| 6 |
5
|
eqeq1d |
|- ( ph -> ( ( A /R C ) = B <-> ( iota_ x e. RR ( C x. x ) = A ) = B ) ) |
| 7 |
1 3 4
|
rediveud |
|- ( ph -> E! x e. RR ( C x. x ) = A ) |
| 8 |
|
oveq2 |
|- ( x = B -> ( C x. x ) = ( C x. B ) ) |
| 9 |
8
|
eqeq1d |
|- ( x = B -> ( ( C x. x ) = A <-> ( C x. B ) = A ) ) |
| 10 |
9
|
riota2 |
|- ( ( B e. RR /\ E! x e. RR ( C x. x ) = A ) -> ( ( C x. B ) = A <-> ( iota_ x e. RR ( C x. x ) = A ) = B ) ) |
| 11 |
2 7 10
|
syl2anc |
|- ( ph -> ( ( C x. B ) = A <-> ( iota_ x e. RR ( C x. x ) = A ) = B ) ) |
| 12 |
6 11
|
bitr4d |
|- ( ph -> ( ( A /R C ) = B <-> ( C x. B ) = A ) ) |