Description: A cancellation law for division. (Contributed by SN, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | redivcan2d.a | |- ( ph -> A e. RR ) |
|
| redivcan2d.b | |- ( ph -> B e. RR ) |
||
| redivcan2d.z | |- ( ph -> B =/= 0 ) |
||
| Assertion | redivcan3d | |- ( ph -> ( ( B x. A ) /R B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivcan2d.a | |- ( ph -> A e. RR ) |
|
| 2 | redivcan2d.b | |- ( ph -> B e. RR ) |
|
| 3 | redivcan2d.z | |- ( ph -> B =/= 0 ) |
|
| 4 | eqidd | |- ( ph -> ( B x. A ) = ( B x. A ) ) |
|
| 5 | 2 1 | remulcld | |- ( ph -> ( B x. A ) e. RR ) |
| 6 | 5 1 2 3 | redivmuld | |- ( ph -> ( ( ( B x. A ) /R B ) = A <-> ( B x. A ) = ( B x. A ) ) ) |
| 7 | 4 6 | mpbird | |- ( ph -> ( ( B x. A ) /R B ) = A ) |