Metamath Proof Explorer


Theorem sn-rereccld

Description: Closure law for reciprocal. (Contributed by SN, 25-Nov-2025)

Ref Expression
Hypotheses sn-rereccld.a
|- ( ph -> A e. RR )
sn-rereccld.z
|- ( ph -> A =/= 0 )
Assertion sn-rereccld
|- ( ph -> ( 1 /R A ) e. RR )

Proof

Step Hyp Ref Expression
1 sn-rereccld.a
 |-  ( ph -> A e. RR )
2 sn-rereccld.z
 |-  ( ph -> A =/= 0 )
3 1red
 |-  ( ph -> 1 e. RR )
4 3 1 2 sn-redivcld
 |-  ( ph -> ( 1 /R A ) e. RR )