Description: Closure law for reciprocal. (Contributed by SN, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sn-rereccld.a | |- ( ph -> A e. RR ) |
|
| sn-rereccld.z | |- ( ph -> A =/= 0 ) |
||
| Assertion | sn-rereccld | |- ( ph -> ( 1 /R A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-rereccld.a | |- ( ph -> A e. RR ) |
|
| 2 | sn-rereccld.z | |- ( ph -> A =/= 0 ) |
|
| 3 | 1red | |- ( ph -> 1 e. RR ) |
|
| 4 | 3 1 2 | sn-redivcld | |- ( ph -> ( 1 /R A ) e. RR ) |