Metamath Proof Explorer


Theorem resincl

Description: The sine of a real number is real. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion resincl
|- ( A e. RR -> ( sin ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 resinval
 |-  ( A e. RR -> ( sin ` A ) = ( Im ` ( exp ` ( _i x. A ) ) ) )
2 ax-icn
 |-  _i e. CC
3 recn
 |-  ( A e. RR -> A e. CC )
4 mulcl
 |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC )
5 2 3 4 sylancr
 |-  ( A e. RR -> ( _i x. A ) e. CC )
6 efcl
 |-  ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC )
7 5 6 syl
 |-  ( A e. RR -> ( exp ` ( _i x. A ) ) e. CC )
8 7 imcld
 |-  ( A e. RR -> ( Im ` ( exp ` ( _i x. A ) ) ) e. RR )
9 1 8 eqeltrd
 |-  ( A e. RR -> ( sin ` A ) e. RR )