| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opelxp1 |
|- ( <. A , B >. e. ( C X. _V ) -> A e. C ) |
| 2 |
|
df-res |
|- ( { <. A , B >. } |` C ) = ( { <. A , B >. } i^i ( C X. _V ) ) |
| 3 |
|
incom |
|- ( { <. A , B >. } i^i ( C X. _V ) ) = ( ( C X. _V ) i^i { <. A , B >. } ) |
| 4 |
2 3
|
eqtri |
|- ( { <. A , B >. } |` C ) = ( ( C X. _V ) i^i { <. A , B >. } ) |
| 5 |
|
disjsn |
|- ( ( ( C X. _V ) i^i { <. A , B >. } ) = (/) <-> -. <. A , B >. e. ( C X. _V ) ) |
| 6 |
5
|
biimpri |
|- ( -. <. A , B >. e. ( C X. _V ) -> ( ( C X. _V ) i^i { <. A , B >. } ) = (/) ) |
| 7 |
4 6
|
eqtrid |
|- ( -. <. A , B >. e. ( C X. _V ) -> ( { <. A , B >. } |` C ) = (/) ) |
| 8 |
1 7
|
nsyl5 |
|- ( -. A e. C -> ( { <. A , B >. } |` C ) = (/) ) |