| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpr.1 |
|- A e. _V |
| 2 |
|
fpr.2 |
|- B e. _V |
| 3 |
|
fpr.3 |
|- C e. _V |
| 4 |
|
fpr.4 |
|- D e. _V |
| 5 |
1 2 3 4
|
funpr |
|- ( A =/= B -> Fun { <. A , C >. , <. B , D >. } ) |
| 6 |
3 4
|
dmprop |
|- dom { <. A , C >. , <. B , D >. } = { A , B } |
| 7 |
|
df-fn |
|- ( { <. A , C >. , <. B , D >. } Fn { A , B } <-> ( Fun { <. A , C >. , <. B , D >. } /\ dom { <. A , C >. , <. B , D >. } = { A , B } ) ) |
| 8 |
5 6 7
|
sylanblrc |
|- ( A =/= B -> { <. A , C >. , <. B , D >. } Fn { A , B } ) |
| 9 |
|
df-pr |
|- { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) |
| 10 |
9
|
rneqi |
|- ran { <. A , C >. , <. B , D >. } = ran ( { <. A , C >. } u. { <. B , D >. } ) |
| 11 |
|
rnun |
|- ran ( { <. A , C >. } u. { <. B , D >. } ) = ( ran { <. A , C >. } u. ran { <. B , D >. } ) |
| 12 |
1
|
rnsnop |
|- ran { <. A , C >. } = { C } |
| 13 |
2
|
rnsnop |
|- ran { <. B , D >. } = { D } |
| 14 |
12 13
|
uneq12i |
|- ( ran { <. A , C >. } u. ran { <. B , D >. } ) = ( { C } u. { D } ) |
| 15 |
|
df-pr |
|- { C , D } = ( { C } u. { D } ) |
| 16 |
14 15
|
eqtr4i |
|- ( ran { <. A , C >. } u. ran { <. B , D >. } ) = { C , D } |
| 17 |
10 11 16
|
3eqtri |
|- ran { <. A , C >. , <. B , D >. } = { C , D } |
| 18 |
17
|
eqimssi |
|- ran { <. A , C >. , <. B , D >. } C_ { C , D } |
| 19 |
|
df-f |
|- ( { <. A , C >. , <. B , D >. } : { A , B } --> { C , D } <-> ( { <. A , C >. , <. B , D >. } Fn { A , B } /\ ran { <. A , C >. , <. B , D >. } C_ { C , D } ) ) |
| 20 |
8 18 19
|
sylanblrc |
|- ( A =/= B -> { <. A , C >. , <. B , D >. } : { A , B } --> { C , D } ) |