Metamath Proof Explorer


Theorem fpr

Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses fpr.1 AV
fpr.2 BV
fpr.3 CV
fpr.4 DV
Assertion fpr ABACBD:ABCD

Proof

Step Hyp Ref Expression
1 fpr.1 AV
2 fpr.2 BV
3 fpr.3 CV
4 fpr.4 DV
5 1 2 3 4 funpr ABFunACBD
6 3 4 dmprop domACBD=AB
7 df-fn ACBDFnABFunACBDdomACBD=AB
8 5 6 7 sylanblrc ABACBDFnAB
9 df-pr ACBD=ACBD
10 9 rneqi ranACBD=ranACBD
11 rnun ranACBD=ranACranBD
12 1 rnsnop ranAC=C
13 2 rnsnop ranBD=D
14 12 13 uneq12i ranACranBD=CD
15 df-pr CD=CD
16 14 15 eqtr4i ranACranBD=CD
17 10 11 16 3eqtri ranACBD=CD
18 17 eqimssi ranACBDCD
19 df-f ACBD:ABCDACBDFnABranACBDCD
20 8 18 19 sylanblrc ABACBD:ABCD