Description: Relationship between subtraction and addition. Based on subaddd . (Contributed by Steven Nguyen, 8-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resubaddd.1 | |- ( ph -> A e. RR ) |
|
| resubaddd.2 | |- ( ph -> B e. RR ) |
||
| resubaddd.3 | |- ( ph -> C e. RR ) |
||
| Assertion | resubaddd | |- ( ph -> ( ( A -R B ) = C <-> ( B + C ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubaddd.1 | |- ( ph -> A e. RR ) |
|
| 2 | resubaddd.2 | |- ( ph -> B e. RR ) |
|
| 3 | resubaddd.3 | |- ( ph -> C e. RR ) |
|
| 4 | resubadd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) = C <-> ( B + C ) = A ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A -R B ) = C <-> ( B + C ) = A ) ) |