Metamath Proof Explorer


Theorem resubaddd

Description: Relationship between subtraction and addition. Based on subaddd . (Contributed by Steven Nguyen, 8-Jan-2023)

Ref Expression
Hypotheses resubaddd.1
|- ( ph -> A e. RR )
resubaddd.2
|- ( ph -> B e. RR )
resubaddd.3
|- ( ph -> C e. RR )
Assertion resubaddd
|- ( ph -> ( ( A -R B ) = C <-> ( B + C ) = A ) )

Proof

Step Hyp Ref Expression
1 resubaddd.1
 |-  ( ph -> A e. RR )
2 resubaddd.2
 |-  ( ph -> B e. RR )
3 resubaddd.3
 |-  ( ph -> C e. RR )
4 resubadd
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) = C <-> ( B + C ) = A ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( ( A -R B ) = C <-> ( B + C ) = A ) )