| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resvbas.1 |
|- H = ( G |`v A ) |
| 2 |
|
resv0g.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
eqidd |
|- ( A e. V -> ( Base ` G ) = ( Base ` G ) ) |
| 4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 5 |
1 4
|
resvbas |
|- ( A e. V -> ( Base ` G ) = ( Base ` H ) ) |
| 6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 7 |
1 6
|
resvplusg |
|- ( A e. V -> ( +g ` G ) = ( +g ` H ) ) |
| 8 |
7
|
oveqdr |
|- ( ( A e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 9 |
3 5 8
|
grpidpropd |
|- ( A e. V -> ( 0g ` G ) = ( 0g ` H ) ) |
| 10 |
2 9
|
eqtrid |
|- ( A e. V -> .0. = ( 0g ` H ) ) |