| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resvbas.1 |
|- H = ( G |`v A ) |
| 2 |
|
resv1r.2 |
|- .1. = ( 1r ` G ) |
| 3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 4 |
1 3
|
resvbas |
|- ( A e. V -> ( Base ` G ) = ( Base ` H ) ) |
| 5 |
4
|
eleq2d |
|- ( A e. V -> ( e e. ( Base ` G ) <-> e e. ( Base ` H ) ) ) |
| 6 |
|
eqid |
|- ( .r ` G ) = ( .r ` G ) |
| 7 |
1 6
|
resvmulr |
|- ( A e. V -> ( .r ` G ) = ( .r ` H ) ) |
| 8 |
7
|
oveqd |
|- ( A e. V -> ( e ( .r ` G ) x ) = ( e ( .r ` H ) x ) ) |
| 9 |
8
|
eqeq1d |
|- ( A e. V -> ( ( e ( .r ` G ) x ) = x <-> ( e ( .r ` H ) x ) = x ) ) |
| 10 |
7
|
oveqd |
|- ( A e. V -> ( x ( .r ` G ) e ) = ( x ( .r ` H ) e ) ) |
| 11 |
10
|
eqeq1d |
|- ( A e. V -> ( ( x ( .r ` G ) e ) = x <-> ( x ( .r ` H ) e ) = x ) ) |
| 12 |
9 11
|
anbi12d |
|- ( A e. V -> ( ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) <-> ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) |
| 13 |
4 12
|
raleqbidv |
|- ( A e. V -> ( A. x e. ( Base ` G ) ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) <-> A. x e. ( Base ` H ) ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) |
| 14 |
5 13
|
anbi12d |
|- ( A e. V -> ( ( e e. ( Base ` G ) /\ A. x e. ( Base ` G ) ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) ) <-> ( e e. ( Base ` H ) /\ A. x e. ( Base ` H ) ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) ) |
| 15 |
14
|
iotabidv |
|- ( A e. V -> ( iota e ( e e. ( Base ` G ) /\ A. x e. ( Base ` G ) ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) ) ) = ( iota e ( e e. ( Base ` H ) /\ A. x e. ( Base ` H ) ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) ) |
| 16 |
3 6 2
|
dfur2 |
|- .1. = ( iota e ( e e. ( Base ` G ) /\ A. x e. ( Base ` G ) ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) ) ) |
| 17 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 18 |
|
eqid |
|- ( .r ` H ) = ( .r ` H ) |
| 19 |
|
eqid |
|- ( 1r ` H ) = ( 1r ` H ) |
| 20 |
17 18 19
|
dfur2 |
|- ( 1r ` H ) = ( iota e ( e e. ( Base ` H ) /\ A. x e. ( Base ` H ) ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) |
| 21 |
15 16 20
|
3eqtr4g |
|- ( A e. V -> .1. = ( 1r ` H ) ) |