Step |
Hyp |
Ref |
Expression |
1 |
|
resvbas.1 |
⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) |
2 |
|
resv1r.2 |
⊢ 1 = ( 1r ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
4 |
1 3
|
resvbas |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑒 ∈ ( Base ‘ 𝐺 ) ↔ 𝑒 ∈ ( Base ‘ 𝐻 ) ) ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) |
7 |
1 6
|
resvmulr |
⊢ ( 𝐴 ∈ 𝑉 → ( .r ‘ 𝐺 ) = ( .r ‘ 𝐻 ) ) |
8 |
7
|
oveqd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ↔ ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ) ) |
10 |
7
|
oveqd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ↔ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) |
12 |
9 11
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ↔ ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) |
13 |
4 12
|
raleqbidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) |
14 |
5 13
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑒 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ↔ ( 𝑒 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) ) |
15 |
14
|
iotabidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) = ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) ) |
16 |
3 6 2
|
dfur2 |
⊢ 1 = ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
18 |
|
eqid |
⊢ ( .r ‘ 𝐻 ) = ( .r ‘ 𝐻 ) |
19 |
|
eqid |
⊢ ( 1r ‘ 𝐻 ) = ( 1r ‘ 𝐻 ) |
20 |
17 18 19
|
dfur2 |
⊢ ( 1r ‘ 𝐻 ) = ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) |
21 |
15 16 20
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → 1 = ( 1r ‘ 𝐻 ) ) |