Metamath Proof Explorer
Description: .s is unaffected by scalar restriction. (Contributed by Thierry
Arnoux, 6-Sep-2018)
|
|
Ref |
Expression |
|
Hypotheses |
resvbas.1 |
⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) |
|
|
resvmulr.2 |
⊢ · = ( .r ‘ 𝐺 ) |
|
Assertion |
resvmulr |
⊢ ( 𝐴 ∈ 𝑉 → · = ( .r ‘ 𝐻 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
resvbas.1 |
⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) |
2 |
|
resvmulr.2 |
⊢ · = ( .r ‘ 𝐺 ) |
3 |
|
df-mulr |
⊢ .r = Slot 3 |
4 |
|
3nn |
⊢ 3 ∈ ℕ |
5 |
|
3re |
⊢ 3 ∈ ℝ |
6 |
|
3lt5 |
⊢ 3 < 5 |
7 |
5 6
|
ltneii |
⊢ 3 ≠ 5 |
8 |
1 2 3 4 7
|
resvlem |
⊢ ( 𝐴 ∈ 𝑉 → · = ( .r ‘ 𝐻 ) ) |