Metamath Proof Explorer
Description: .r is unaffected by scalar restriction. (Contributed by Thierry
Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)
|
|
Ref |
Expression |
|
Hypotheses |
resvbas.1 |
⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) |
|
|
resvmulr.2 |
⊢ · = ( .r ‘ 𝐺 ) |
|
Assertion |
resvmulr |
⊢ ( 𝐴 ∈ 𝑉 → · = ( .r ‘ 𝐻 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
resvbas.1 |
⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) |
2 |
|
resvmulr.2 |
⊢ · = ( .r ‘ 𝐺 ) |
3 |
|
mulrid |
⊢ .r = Slot ( .r ‘ ndx ) |
4 |
|
scandxnmulrndx |
⊢ ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx ) |
5 |
4
|
necomi |
⊢ ( .r ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
6 |
1 2 3 5
|
resvlem |
⊢ ( 𝐴 ∈ 𝑉 → · = ( .r ‘ 𝐻 ) ) |