Metamath Proof Explorer


Theorem resvmulr

Description: .r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses resvbas.1
|- H = ( G |`v A )
resvmulr.2
|- .x. = ( .r ` G )
Assertion resvmulr
|- ( A e. V -> .x. = ( .r ` H ) )

Proof

Step Hyp Ref Expression
1 resvbas.1
 |-  H = ( G |`v A )
2 resvmulr.2
 |-  .x. = ( .r ` G )
3 mulrid
 |-  .r = Slot ( .r ` ndx )
4 scandxnmulrndx
 |-  ( Scalar ` ndx ) =/= ( .r ` ndx )
5 4 necomi
 |-  ( .r ` ndx ) =/= ( Scalar ` ndx )
6 1 2 3 5 resvlem
 |-  ( A e. V -> .x. = ( .r ` H ) )