Description: .r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resvbas.1 | |- H = ( G |`v A ) |
|
resvmulr.2 | |- .x. = ( .r ` G ) |
||
Assertion | resvmulr | |- ( A e. V -> .x. = ( .r ` H ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvbas.1 | |- H = ( G |`v A ) |
|
2 | resvmulr.2 | |- .x. = ( .r ` G ) |
|
3 | mulrid | |- .r = Slot ( .r ` ndx ) |
|
4 | scandxnmulrndx | |- ( Scalar ` ndx ) =/= ( .r ` ndx ) |
|
5 | 4 | necomi | |- ( .r ` ndx ) =/= ( Scalar ` ndx ) |
6 | 1 2 3 5 | resvlem | |- ( A e. V -> .x. = ( .r ` H ) ) |