Description: .r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvbas.1 | |- H = ( G |`v A ) | |
| resvmulr.2 | |- .x. = ( .r ` G ) | ||
| Assertion | resvmulr | |- ( A e. V -> .x. = ( .r ` H ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resvbas.1 | |- H = ( G |`v A ) | |
| 2 | resvmulr.2 | |- .x. = ( .r ` G ) | |
| 3 | mulridx | |- .r = Slot ( .r ` ndx ) | |
| 4 | scandxnmulrndx | |- ( Scalar ` ndx ) =/= ( .r ` ndx ) | |
| 5 | 4 | necomi | |- ( .r ` ndx ) =/= ( Scalar ` ndx ) | 
| 6 | 1 2 3 5 | resvlem | |- ( A e. V -> .x. = ( .r ` H ) ) |