Metamath Proof Explorer


Theorem reu6i

Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion reu6i
|- ( ( B e. A /\ A. x e. A ( ph <-> x = B ) ) -> E! x e. A ph )

Proof

Step Hyp Ref Expression
1 eqeq2
 |-  ( y = B -> ( x = y <-> x = B ) )
2 1 bibi2d
 |-  ( y = B -> ( ( ph <-> x = y ) <-> ( ph <-> x = B ) ) )
3 2 ralbidv
 |-  ( y = B -> ( A. x e. A ( ph <-> x = y ) <-> A. x e. A ( ph <-> x = B ) ) )
4 3 rspcev
 |-  ( ( B e. A /\ A. x e. A ( ph <-> x = B ) ) -> E. y e. A A. x e. A ( ph <-> x = y ) )
5 reu6
 |-  ( E! x e. A ph <-> E. y e. A A. x e. A ( ph <-> x = y ) )
6 4 5 sylibr
 |-  ( ( B e. A /\ A. x e. A ( ph <-> x = B ) ) -> E! x e. A ph )