Metamath Proof Explorer


Theorem rexabso

Description: Simplification of restricted quantification in a transitive class. When ph is quantifier-free, this shows that the formula E. x e. y ph is absolute for transitive models, which is a particular case of Lemma I.16.2 of Kunen2 p. 95. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion rexabso
|- ( ( Tr M /\ A e. M ) -> ( E. x e. A ph <-> E. x e. M ( x e. A /\ ph ) ) )

Proof

Step Hyp Ref Expression
1 trss
 |-  ( Tr M -> ( A e. M -> A C_ M ) )
2 1 imp
 |-  ( ( Tr M /\ A e. M ) -> A C_ M )
3 rexss
 |-  ( A C_ M -> ( E. x e. A ph <-> E. x e. M ( x e. A /\ ph ) ) )
4 2 3 syl
 |-  ( ( Tr M /\ A e. M ) -> ( E. x e. A ph <-> E. x e. M ( x e. A /\ ph ) ) )