Description: Deduction form of ralabso . (Contributed by Eric Schmidt, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralabsod.1 | |- ( ph -> Tr M ) |
|
| Assertion | ralabsod | |- ( ( ph /\ A e. M ) -> ( A. x e. A ps <-> A. x e. M ( x e. A -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralabsod.1 | |- ( ph -> Tr M ) |
|
| 2 | ralabso | |- ( ( Tr M /\ A e. M ) -> ( A. x e. A ps <-> A. x e. M ( x e. A -> ps ) ) ) |
|
| 3 | 1 2 | sylan | |- ( ( ph /\ A e. M ) -> ( A. x e. A ps <-> A. x e. M ( x e. A -> ps ) ) ) |