Metamath Proof Explorer


Theorem ralabsod

Description: Deduction form of ralabso . (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis ralabsod.1
|- ( ph -> Tr M )
Assertion ralabsod
|- ( ( ph /\ A e. M ) -> ( A. x e. A ps <-> A. x e. M ( x e. A -> ps ) ) )

Proof

Step Hyp Ref Expression
1 ralabsod.1
 |-  ( ph -> Tr M )
2 ralabso
 |-  ( ( Tr M /\ A e. M ) -> ( A. x e. A ps <-> A. x e. M ( x e. A -> ps ) ) )
3 1 2 sylan
 |-  ( ( ph /\ A e. M ) -> ( A. x e. A ps <-> A. x e. M ( x e. A -> ps ) ) )