Metamath Proof Explorer


Theorem ralabsod

Description: Deduction form of ralabso . (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis ralabsod.1 ( 𝜑 → Tr 𝑀 )
Assertion ralabsod ( ( 𝜑𝐴𝑀 ) → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝑀 ( 𝑥𝐴𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 ralabsod.1 ( 𝜑 → Tr 𝑀 )
2 ralabso ( ( Tr 𝑀𝐴𝑀 ) → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝑀 ( 𝑥𝐴𝜓 ) ) )
3 1 2 sylan ( ( 𝜑𝐴𝑀 ) → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝑀 ( 𝑥𝐴𝜓 ) ) )