Metamath Proof Explorer
Description: Deduction form of rexabso . (Contributed by Eric Schmidt, 19-Oct-2025)
|
|
Ref |
Expression |
|
Hypothesis |
ralabsod.1 |
⊢ ( 𝜑 → Tr 𝑀 ) |
|
Assertion |
rexabsod |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑀 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralabsod.1 |
⊢ ( 𝜑 → Tr 𝑀 ) |
| 2 |
|
rexabso |
⊢ ( ( Tr 𝑀 ∧ 𝐴 ∈ 𝑀 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑀 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |