Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Eric Schmidt
rexabsod
Next ⟩
ralabsobidv
Metamath Proof Explorer
Ascii
Unicode
Theorem
rexabsod
Description:
Deduction form of
rexabso
.
(Contributed by
Eric Schmidt
, 19-Oct-2025)
Ref
Expression
Hypothesis
ralabsod.1
⊢
φ
→
Tr
⁡
M
Assertion
rexabsod
⊢
φ
∧
A
∈
M
→
∃
x
∈
A
ψ
↔
∃
x
∈
M
x
∈
A
∧
ψ
Proof
Step
Hyp
Ref
Expression
1
ralabsod.1
⊢
φ
→
Tr
⁡
M
2
rexabso
⊢
Tr
⁡
M
∧
A
∈
M
→
∃
x
∈
A
ψ
↔
∃
x
∈
M
x
∈
A
∧
ψ
3
1
2
sylan
⊢
φ
∧
A
∈
M
→
∃
x
∈
A
ψ
↔
∃
x
∈
M
x
∈
A
∧
ψ