Metamath Proof Explorer


Theorem ralabsobidv

Description: Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypotheses ralabsod.1 φ Tr M
ralabsobidv.2 φ ψ χ
Assertion ralabsobidv φ A M x A ψ x M x A χ

Proof

Step Hyp Ref Expression
1 ralabsod.1 φ Tr M
2 ralabsobidv.2 φ ψ χ
3 2 ralbidv φ x A ψ x A χ
4 3 adantr φ A M x A ψ x A χ
5 1 ralabsod φ A M x A χ x M x A χ
6 4 5 bitrd φ A M x A ψ x M x A χ