Metamath Proof Explorer


Theorem ralabsobidv

Description: Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypotheses ralabsod.1
|- ( ph -> Tr M )
ralabsobidv.2
|- ( ph -> ( ps <-> ch ) )
Assertion ralabsobidv
|- ( ( ph /\ A e. M ) -> ( A. x e. A ps <-> A. x e. M ( x e. A -> ch ) ) )

Proof

Step Hyp Ref Expression
1 ralabsod.1
 |-  ( ph -> Tr M )
2 ralabsobidv.2
 |-  ( ph -> ( ps <-> ch ) )
3 2 ralbidv
 |-  ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )
4 3 adantr
 |-  ( ( ph /\ A e. M ) -> ( A. x e. A ps <-> A. x e. A ch ) )
5 1 ralabsod
 |-  ( ( ph /\ A e. M ) -> ( A. x e. A ch <-> A. x e. M ( x e. A -> ch ) ) )
6 4 5 bitrd
 |-  ( ( ph /\ A e. M ) -> ( A. x e. A ps <-> A. x e. M ( x e. A -> ch ) ) )