Metamath Proof Explorer


Theorem rexabsobidv

Description: Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypotheses ralabsod.1
|- ( ph -> Tr M )
ralabsobidv.2
|- ( ph -> ( ps <-> ch ) )
Assertion rexabsobidv
|- ( ( ph /\ A e. M ) -> ( E. x e. A ps <-> E. x e. M ( x e. A /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 ralabsod.1
 |-  ( ph -> Tr M )
2 ralabsobidv.2
 |-  ( ph -> ( ps <-> ch ) )
3 2 rexbidv
 |-  ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )
4 3 adantr
 |-  ( ( ph /\ A e. M ) -> ( E. x e. A ps <-> E. x e. A ch ) )
5 1 rexabsod
 |-  ( ( ph /\ A e. M ) -> ( E. x e. A ch <-> E. x e. M ( x e. A /\ ch ) ) )
6 4 5 bitrd
 |-  ( ( ph /\ A e. M ) -> ( E. x e. A ps <-> E. x e. M ( x e. A /\ ch ) ) )