Description: Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralabsod.1 | |- ( ph -> Tr M ) |
|
| ralabsobidv.2 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | rexabsobidv | |- ( ( ph /\ A e. M ) -> ( E. x e. A ps <-> E. x e. M ( x e. A /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralabsod.1 | |- ( ph -> Tr M ) |
|
| 2 | ralabsobidv.2 | |- ( ph -> ( ps <-> ch ) ) |
|
| 3 | 2 | rexbidv | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |
| 4 | 3 | adantr | |- ( ( ph /\ A e. M ) -> ( E. x e. A ps <-> E. x e. A ch ) ) |
| 5 | 1 | rexabsod | |- ( ( ph /\ A e. M ) -> ( E. x e. A ch <-> E. x e. M ( x e. A /\ ch ) ) ) |
| 6 | 4 5 | bitrd | |- ( ( ph /\ A e. M ) -> ( E. x e. A ps <-> E. x e. M ( x e. A /\ ch ) ) ) |