Metamath Proof Explorer


Theorem rexabsobidv

Description: Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypotheses ralabsod.1 ( 𝜑 → Tr 𝑀 )
ralabsobidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rexabsobidv ( ( 𝜑𝐴𝑀 ) → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝑀 ( 𝑥𝐴𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 ralabsod.1 ( 𝜑 → Tr 𝑀 )
2 ralabsobidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 2 rexbidv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )
4 3 adantr ( ( 𝜑𝐴𝑀 ) → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )
5 1 rexabsod ( ( 𝜑𝐴𝑀 ) → ( ∃ 𝑥𝐴 𝜒 ↔ ∃ 𝑥𝑀 ( 𝑥𝐴𝜒 ) ) )
6 4 5 bitrd ( ( 𝜑𝐴𝑀 ) → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝑀 ( 𝑥𝐴𝜒 ) ) )