Description: Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralabsod.1 | ⊢ ( 𝜑 → Tr 𝑀 ) | |
| ralabsobidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rexabsobidv | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑀 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralabsod.1 | ⊢ ( 𝜑 → Tr 𝑀 ) | |
| 2 | ralabsobidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑀 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 5 | 1 | rexabsod | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑀 ) → ( ∃ 𝑥 ∈ 𝐴 𝜒 ↔ ∃ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 6 | 4 5 | bitrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑀 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |