Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Revised by Thierry Arnoux, 8-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralcom4f.1 | |- F/_ y A |
|
Assertion | rexcom4f | |- ( E. x e. A E. y ph <-> E. y E. x e. A ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom4f.1 | |- F/_ y A |
|
2 | nfcv | |- F/_ x _V |
|
3 | 1 2 | rexcomf | |- ( E. x e. A E. y e. _V ph <-> E. y e. _V E. x e. A ph ) |
4 | rexv | |- ( E. y e. _V ph <-> E. y ph ) |
|
5 | 4 | rexbii | |- ( E. x e. A E. y e. _V ph <-> E. x e. A E. y ph ) |
6 | rexv | |- ( E. y e. _V E. x e. A ph <-> E. y E. x e. A ph ) |
|
7 | 3 5 6 | 3bitr3i | |- ( E. x e. A E. y ph <-> E. y E. x e. A ph ) |