Metamath Proof Explorer


Theorem rexcom4f

Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Revised by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypothesis ralcom4f.1
|- F/_ y A
Assertion rexcom4f
|- ( E. x e. A E. y ph <-> E. y E. x e. A ph )

Proof

Step Hyp Ref Expression
1 ralcom4f.1
 |-  F/_ y A
2 nfcv
 |-  F/_ x _V
3 1 2 rexcomf
 |-  ( E. x e. A E. y e. _V ph <-> E. y e. _V E. x e. A ph )
4 rexv
 |-  ( E. y e. _V ph <-> E. y ph )
5 4 rexbii
 |-  ( E. x e. A E. y e. _V ph <-> E. x e. A E. y ph )
6 rexv
 |-  ( E. y e. _V E. x e. A ph <-> E. y E. x e. A ph )
7 3 5 6 3bitr3i
 |-  ( E. x e. A E. y ph <-> E. y E. x e. A ph )