Metamath Proof Explorer


Theorem rexlimivwOLD

Description: Obsolete version of rexlimivw as of 23-Dec-2024. (Contributed by FL, 19-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rexlimivwOLD.1
|- ( ph -> ps )
Assertion rexlimivwOLD
|- ( E. x e. A ph -> ps )

Proof

Step Hyp Ref Expression
1 rexlimivwOLD.1
 |-  ( ph -> ps )
2 1 a1i
 |-  ( x e. A -> ( ph -> ps ) )
3 2 rexlimiv
 |-  ( E. x e. A ph -> ps )