Description: Value of the converse of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B . (Contributed by RP, 27-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rfovd.rf | |- O = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) ) |
|
rfovd.a | |- ( ph -> A e. V ) |
||
rfovd.b | |- ( ph -> B e. W ) |
||
rfovcnvf1od.f | |- F = ( A O B ) |
||
Assertion | rfovcnvd | |- ( ph -> `' F = ( f e. ( ~P B ^m A ) |-> { <. x , y >. | ( x e. A /\ y e. ( f ` x ) ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfovd.rf | |- O = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) ) |
|
2 | rfovd.a | |- ( ph -> A e. V ) |
|
3 | rfovd.b | |- ( ph -> B e. W ) |
|
4 | rfovcnvf1od.f | |- F = ( A O B ) |
|
5 | 1 2 3 4 | rfovcnvf1od | |- ( ph -> ( F : ~P ( A X. B ) -1-1-onto-> ( ~P B ^m A ) /\ `' F = ( f e. ( ~P B ^m A ) |-> { <. x , y >. | ( x e. A /\ y e. ( f ` x ) ) } ) ) ) |
6 | 5 | simprd | |- ( ph -> `' F = ( f e. ( ~P B ^m A ) |-> { <. x , y >. | ( x e. A /\ y e. ( f ` x ) ) } ) ) |