Metamath Proof Explorer


Theorem rgen3

Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008)

Ref Expression
Hypothesis rgen3.1
|- ( ( x e. A /\ y e. B /\ z e. C ) -> ph )
Assertion rgen3
|- A. x e. A A. y e. B A. z e. C ph

Proof

Step Hyp Ref Expression
1 rgen3.1
 |-  ( ( x e. A /\ y e. B /\ z e. C ) -> ph )
2 1 3expa
 |-  ( ( ( x e. A /\ y e. B ) /\ z e. C ) -> ph )
3 2 ralrimiva
 |-  ( ( x e. A /\ y e. B ) -> A. z e. C ph )
4 3 rgen2
 |-  A. x e. A A. y e. B A. z e. C ph