| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmrcl2 |
|- ( F e. ( T RingHom U ) -> U e. Ring ) |
| 2 |
|
rhmrcl1 |
|- ( G e. ( S RingHom T ) -> S e. Ring ) |
| 3 |
1 2
|
anim12ci |
|- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( S e. Ring /\ U e. Ring ) ) |
| 4 |
|
rhmghm |
|- ( F e. ( T RingHom U ) -> F e. ( T GrpHom U ) ) |
| 5 |
|
rhmghm |
|- ( G e. ( S RingHom T ) -> G e. ( S GrpHom T ) ) |
| 6 |
|
ghmco |
|- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
| 7 |
4 5 6
|
syl2an |
|- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
| 8 |
|
eqid |
|- ( mulGrp ` T ) = ( mulGrp ` T ) |
| 9 |
|
eqid |
|- ( mulGrp ` U ) = ( mulGrp ` U ) |
| 10 |
8 9
|
rhmmhm |
|- ( F e. ( T RingHom U ) -> F e. ( ( mulGrp ` T ) MndHom ( mulGrp ` U ) ) ) |
| 11 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 12 |
11 8
|
rhmmhm |
|- ( G e. ( S RingHom T ) -> G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 13 |
|
mhmco |
|- ( ( F e. ( ( mulGrp ` T ) MndHom ( mulGrp ` U ) ) /\ G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) |
| 14 |
10 12 13
|
syl2an |
|- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) |
| 15 |
7 14
|
jca |
|- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) |
| 16 |
11 9
|
isrhm |
|- ( ( F o. G ) e. ( S RingHom U ) <-> ( ( S e. Ring /\ U e. Ring ) /\ ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) |
| 17 |
3 15 16
|
sylanbrc |
|- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( S RingHom U ) ) |