| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmghm |
|- ( F e. ( M RingHom N ) -> F e. ( M GrpHom N ) ) |
| 2 |
|
subrgsubg |
|- ( X e. ( SubRing ` M ) -> X e. ( SubGrp ` M ) ) |
| 3 |
|
ghmima |
|- ( ( F e. ( M GrpHom N ) /\ X e. ( SubGrp ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
| 5 |
|
eqid |
|- ( mulGrp ` M ) = ( mulGrp ` M ) |
| 6 |
|
eqid |
|- ( mulGrp ` N ) = ( mulGrp ` N ) |
| 7 |
5 6
|
rhmmhm |
|- ( F e. ( M RingHom N ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) |
| 8 |
5
|
subrgsubm |
|- ( X e. ( SubRing ` M ) -> X e. ( SubMnd ` ( mulGrp ` M ) ) ) |
| 9 |
|
mhmima |
|- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubMnd ` ( mulGrp ` M ) ) ) -> ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) |
| 11 |
|
rhmrcl2 |
|- ( F e. ( M RingHom N ) -> N e. Ring ) |
| 12 |
11
|
adantr |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> N e. Ring ) |
| 13 |
6
|
issubrg3 |
|- ( N e. Ring -> ( ( F " X ) e. ( SubRing ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) ) ) |
| 14 |
12 13
|
syl |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( ( F " X ) e. ( SubRing ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) ) ) |
| 15 |
4 10 14
|
mpbir2and |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubRing ` N ) ) |