Metamath Proof Explorer


Theorem rhmsubclem2

Description: Lemma 2 for rhmsubc . (Contributed by AV, 2-Mar-2020)

Ref Expression
Hypotheses rngcrescrhm.u
|- ( ph -> U e. V )
rngcrescrhm.c
|- C = ( RngCat ` U )
rngcrescrhm.r
|- ( ph -> R = ( Ring i^i U ) )
rngcrescrhm.h
|- H = ( RingHom |` ( R X. R ) )
Assertion rhmsubclem2
|- ( ( ph /\ X e. R /\ Y e. R ) -> ( X H Y ) = ( X RingHom Y ) )

Proof

Step Hyp Ref Expression
1 rngcrescrhm.u
 |-  ( ph -> U e. V )
2 rngcrescrhm.c
 |-  C = ( RngCat ` U )
3 rngcrescrhm.r
 |-  ( ph -> R = ( Ring i^i U ) )
4 rngcrescrhm.h
 |-  H = ( RingHom |` ( R X. R ) )
5 opelxpi
 |-  ( ( X e. R /\ Y e. R ) -> <. X , Y >. e. ( R X. R ) )
6 5 3adant1
 |-  ( ( ph /\ X e. R /\ Y e. R ) -> <. X , Y >. e. ( R X. R ) )
7 6 fvresd
 |-  ( ( ph /\ X e. R /\ Y e. R ) -> ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) = ( RingHom ` <. X , Y >. ) )
8 df-ov
 |-  ( X H Y ) = ( H ` <. X , Y >. )
9 4 fveq1i
 |-  ( H ` <. X , Y >. ) = ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. )
10 8 9 eqtri
 |-  ( X H Y ) = ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. )
11 df-ov
 |-  ( X RingHom Y ) = ( RingHom ` <. X , Y >. )
12 7 10 11 3eqtr4g
 |-  ( ( ph /\ X e. R /\ Y e. R ) -> ( X H Y ) = ( X RingHom Y ) )