Metamath Proof Explorer


Theorem rhmsubc

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020)

Ref Expression
Hypotheses rngcrescrhm.u
|- ( ph -> U e. V )
rngcrescrhm.c
|- C = ( RngCat ` U )
rngcrescrhm.r
|- ( ph -> R = ( Ring i^i U ) )
rngcrescrhm.h
|- H = ( RingHom |` ( R X. R ) )
Assertion rhmsubc
|- ( ph -> H e. ( Subcat ` ( RngCat ` U ) ) )

Proof

Step Hyp Ref Expression
1 rngcrescrhm.u
 |-  ( ph -> U e. V )
2 rngcrescrhm.c
 |-  C = ( RngCat ` U )
3 rngcrescrhm.r
 |-  ( ph -> R = ( Ring i^i U ) )
4 rngcrescrhm.h
 |-  H = ( RingHom |` ( R X. R ) )
5 eqidd
 |-  ( ph -> ( Rng i^i U ) = ( Rng i^i U ) )
6 1 3 5 rhmsscrnghm
 |-  ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( RngHomo |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) )
7 4 a1i
 |-  ( ph -> H = ( RingHom |` ( R X. R ) ) )
8 2 a1i
 |-  ( ph -> C = ( RngCat ` U ) )
9 8 eqcomd
 |-  ( ph -> ( RngCat ` U ) = C )
10 9 fveq2d
 |-  ( ph -> ( Homf ` ( RngCat ` U ) ) = ( Homf ` C ) )
11 eqid
 |-  ( Base ` C ) = ( Base ` C )
12 2 11 1 rngchomfeqhom
 |-  ( ph -> ( Homf ` C ) = ( Hom ` C ) )
13 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
14 2 11 1 13 rngchomfval
 |-  ( ph -> ( Hom ` C ) = ( RngHomo |` ( ( Base ` C ) X. ( Base ` C ) ) ) )
15 2 11 1 rngcbas
 |-  ( ph -> ( Base ` C ) = ( U i^i Rng ) )
16 incom
 |-  ( U i^i Rng ) = ( Rng i^i U )
17 15 16 eqtrdi
 |-  ( ph -> ( Base ` C ) = ( Rng i^i U ) )
18 17 sqxpeqd
 |-  ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Rng i^i U ) X. ( Rng i^i U ) ) )
19 18 reseq2d
 |-  ( ph -> ( RngHomo |` ( ( Base ` C ) X. ( Base ` C ) ) ) = ( RngHomo |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) )
20 14 19 eqtrd
 |-  ( ph -> ( Hom ` C ) = ( RngHomo |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) )
21 10 12 20 3eqtrd
 |-  ( ph -> ( Homf ` ( RngCat ` U ) ) = ( RngHomo |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) )
22 6 7 21 3brtr4d
 |-  ( ph -> H C_cat ( Homf ` ( RngCat ` U ) ) )
23 1 2 3 4 rhmsubclem3
 |-  ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) )
24 1 2 3 4 rhmsubclem4
 |-  ( ( ( ( ph /\ x e. R ) /\ ( y e. R /\ z e. R ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) ) ) -> ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) )
25 24 ralrimivva
 |-  ( ( ( ph /\ x e. R ) /\ ( y e. R /\ z e. R ) ) -> A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) )
26 25 ralrimivva
 |-  ( ( ph /\ x e. R ) -> A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) )
27 23 26 jca
 |-  ( ( ph /\ x e. R ) -> ( ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) /\ A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) )
28 27 ralrimiva
 |-  ( ph -> A. x e. R ( ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) /\ A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) )
29 eqid
 |-  ( Homf ` ( RngCat ` U ) ) = ( Homf ` ( RngCat ` U ) )
30 eqid
 |-  ( Id ` ( RngCat ` U ) ) = ( Id ` ( RngCat ` U ) )
31 eqid
 |-  ( comp ` ( RngCat ` U ) ) = ( comp ` ( RngCat ` U ) )
32 eqid
 |-  ( RngCat ` U ) = ( RngCat ` U )
33 32 rngccat
 |-  ( U e. V -> ( RngCat ` U ) e. Cat )
34 1 33 syl
 |-  ( ph -> ( RngCat ` U ) e. Cat )
35 1 2 3 4 rhmsubclem1
 |-  ( ph -> H Fn ( R X. R ) )
36 29 30 31 34 35 issubc2
 |-  ( ph -> ( H e. ( Subcat ` ( RngCat ` U ) ) <-> ( H C_cat ( Homf ` ( RngCat ` U ) ) /\ A. x e. R ( ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) /\ A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) ) ) )
37 22 28 36 mpbir2and
 |-  ( ph -> H e. ( Subcat ` ( RngCat ` U ) ) )