Step |
Hyp |
Ref |
Expression |
1 |
|
rngcrescrhm.u |
|- ( ph -> U e. V ) |
2 |
|
rngcrescrhm.c |
|- C = ( RngCat ` U ) |
3 |
|
rngcrescrhm.r |
|- ( ph -> R = ( Ring i^i U ) ) |
4 |
|
rngcrescrhm.h |
|- H = ( RingHom |` ( R X. R ) ) |
5 |
|
eqidd |
|- ( ph -> ( Rng i^i U ) = ( Rng i^i U ) ) |
6 |
1 3 5
|
rhmsscrnghm |
|- ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( RngHomo |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
7 |
4
|
a1i |
|- ( ph -> H = ( RingHom |` ( R X. R ) ) ) |
8 |
2
|
a1i |
|- ( ph -> C = ( RngCat ` U ) ) |
9 |
8
|
eqcomd |
|- ( ph -> ( RngCat ` U ) = C ) |
10 |
9
|
fveq2d |
|- ( ph -> ( Homf ` ( RngCat ` U ) ) = ( Homf ` C ) ) |
11 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
12 |
2 11 1
|
rngchomfeqhom |
|- ( ph -> ( Homf ` C ) = ( Hom ` C ) ) |
13 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
14 |
2 11 1 13
|
rngchomfval |
|- ( ph -> ( Hom ` C ) = ( RngHomo |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
15 |
2 11 1
|
rngcbas |
|- ( ph -> ( Base ` C ) = ( U i^i Rng ) ) |
16 |
|
incom |
|- ( U i^i Rng ) = ( Rng i^i U ) |
17 |
15 16
|
eqtrdi |
|- ( ph -> ( Base ` C ) = ( Rng i^i U ) ) |
18 |
17
|
sqxpeqd |
|- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) |
19 |
18
|
reseq2d |
|- ( ph -> ( RngHomo |` ( ( Base ` C ) X. ( Base ` C ) ) ) = ( RngHomo |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
20 |
14 19
|
eqtrd |
|- ( ph -> ( Hom ` C ) = ( RngHomo |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
21 |
10 12 20
|
3eqtrd |
|- ( ph -> ( Homf ` ( RngCat ` U ) ) = ( RngHomo |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
22 |
6 7 21
|
3brtr4d |
|- ( ph -> H C_cat ( Homf ` ( RngCat ` U ) ) ) |
23 |
1 2 3 4
|
rhmsubclem3 |
|- ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) ) |
24 |
1 2 3 4
|
rhmsubclem4 |
|- ( ( ( ( ph /\ x e. R ) /\ ( y e. R /\ z e. R ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) ) ) -> ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) |
25 |
24
|
ralrimivva |
|- ( ( ( ph /\ x e. R ) /\ ( y e. R /\ z e. R ) ) -> A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) |
26 |
25
|
ralrimivva |
|- ( ( ph /\ x e. R ) -> A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) |
27 |
23 26
|
jca |
|- ( ( ph /\ x e. R ) -> ( ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) /\ A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) ) |
28 |
27
|
ralrimiva |
|- ( ph -> A. x e. R ( ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) /\ A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) ) |
29 |
|
eqid |
|- ( Homf ` ( RngCat ` U ) ) = ( Homf ` ( RngCat ` U ) ) |
30 |
|
eqid |
|- ( Id ` ( RngCat ` U ) ) = ( Id ` ( RngCat ` U ) ) |
31 |
|
eqid |
|- ( comp ` ( RngCat ` U ) ) = ( comp ` ( RngCat ` U ) ) |
32 |
|
eqid |
|- ( RngCat ` U ) = ( RngCat ` U ) |
33 |
32
|
rngccat |
|- ( U e. V -> ( RngCat ` U ) e. Cat ) |
34 |
1 33
|
syl |
|- ( ph -> ( RngCat ` U ) e. Cat ) |
35 |
1 2 3 4
|
rhmsubclem1 |
|- ( ph -> H Fn ( R X. R ) ) |
36 |
29 30 31 34 35
|
issubc2 |
|- ( ph -> ( H e. ( Subcat ` ( RngCat ` U ) ) <-> ( H C_cat ( Homf ` ( RngCat ` U ) ) /\ A. x e. R ( ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) /\ A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) ) ) ) |
37 |
22 28 36
|
mpbir2and |
|- ( ph -> H e. ( Subcat ` ( RngCat ` U ) ) ) |