Metamath Proof Explorer


Theorem rhmsubccat

Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020)

Ref Expression
Hypotheses rngcrescrhm.u
|- ( ph -> U e. V )
rngcrescrhm.c
|- C = ( RngCat ` U )
rngcrescrhm.r
|- ( ph -> R = ( Ring i^i U ) )
rngcrescrhm.h
|- H = ( RingHom |` ( R X. R ) )
Assertion rhmsubccat
|- ( ph -> ( ( RngCat ` U ) |`cat H ) e. Cat )

Proof

Step Hyp Ref Expression
1 rngcrescrhm.u
 |-  ( ph -> U e. V )
2 rngcrescrhm.c
 |-  C = ( RngCat ` U )
3 rngcrescrhm.r
 |-  ( ph -> R = ( Ring i^i U ) )
4 rngcrescrhm.h
 |-  H = ( RingHom |` ( R X. R ) )
5 eqid
 |-  ( ( RngCat ` U ) |`cat H ) = ( ( RngCat ` U ) |`cat H )
6 1 2 3 4 rhmsubc
 |-  ( ph -> H e. ( Subcat ` ( RngCat ` U ) ) )
7 5 6 subccat
 |-  ( ph -> ( ( RngCat ` U ) |`cat H ) e. Cat )