Metamath Proof Explorer


Theorem rhmsubccat

Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020)

Ref Expression
Hypotheses rngcrescrhm.u ( 𝜑𝑈𝑉 )
rngcrescrhm.c 𝐶 = ( RngCat ‘ 𝑈 )
rngcrescrhm.r ( 𝜑𝑅 = ( Ring ∩ 𝑈 ) )
rngcrescrhm.h 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) )
Assertion rhmsubccat ( 𝜑 → ( ( RngCat ‘ 𝑈 ) ↾cat 𝐻 ) ∈ Cat )

Proof

Step Hyp Ref Expression
1 rngcrescrhm.u ( 𝜑𝑈𝑉 )
2 rngcrescrhm.c 𝐶 = ( RngCat ‘ 𝑈 )
3 rngcrescrhm.r ( 𝜑𝑅 = ( Ring ∩ 𝑈 ) )
4 rngcrescrhm.h 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) )
5 eqid ( ( RngCat ‘ 𝑈 ) ↾cat 𝐻 ) = ( ( RngCat ‘ 𝑈 ) ↾cat 𝐻 )
6 1 2 3 4 rhmsubc ( 𝜑𝐻 ∈ ( Subcat ‘ ( RngCat ‘ 𝑈 ) ) )
7 5 6 subccat ( 𝜑 → ( ( RngCat ‘ 𝑈 ) ↾cat 𝐻 ) ∈ Cat )