Metamath Proof Explorer


Theorem srhmsubcALTVlem1

Description: Lemma 1 for srhmsubcALTV . (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses srhmsubcALTV.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubcALTV.c 𝐶 = ( 𝑈𝑆 )
Assertion srhmsubcALTVlem1 ( ( 𝑈𝑉𝑋𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 srhmsubcALTV.s 𝑟𝑆 𝑟 ∈ Ring
2 srhmsubcALTV.c 𝐶 = ( 𝑈𝑆 )
3 1 2 srhmsubclem1 ( 𝑋𝐶𝑋 ∈ ( 𝑈 ∩ Ring ) )
4 3 adantl ( ( 𝑈𝑉𝑋𝐶 ) → 𝑋 ∈ ( 𝑈 ∩ Ring ) )
5 eqid ( RingCatALTV ‘ 𝑈 ) = ( RingCatALTV ‘ 𝑈 )
6 eqid ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) = ( Base ‘ ( RingCatALTV ‘ 𝑈 ) )
7 id ( 𝑈𝑉𝑈𝑉 )
8 5 6 7 ringcbasALTV ( 𝑈𝑉 → ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) )
9 8 adantr ( ( 𝑈𝑉𝑋𝐶 ) → ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) )
10 4 9 eleqtrrd ( ( 𝑈𝑉𝑋𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) )