Metamath Proof Explorer


Theorem srhmsubcALTVlem1

Description: Lemma 1 for srhmsubcALTV . (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses srhmsubcALTV.s
|- A. r e. S r e. Ring
srhmsubcALTV.c
|- C = ( U i^i S )
Assertion srhmsubcALTVlem1
|- ( ( U e. V /\ X e. C ) -> X e. ( Base ` ( RingCatALTV ` U ) ) )

Proof

Step Hyp Ref Expression
1 srhmsubcALTV.s
 |-  A. r e. S r e. Ring
2 srhmsubcALTV.c
 |-  C = ( U i^i S )
3 1 2 srhmsubclem1
 |-  ( X e. C -> X e. ( U i^i Ring ) )
4 3 adantl
 |-  ( ( U e. V /\ X e. C ) -> X e. ( U i^i Ring ) )
5 eqid
 |-  ( RingCatALTV ` U ) = ( RingCatALTV ` U )
6 eqid
 |-  ( Base ` ( RingCatALTV ` U ) ) = ( Base ` ( RingCatALTV ` U ) )
7 id
 |-  ( U e. V -> U e. V )
8 5 6 7 ringcbasALTV
 |-  ( U e. V -> ( Base ` ( RingCatALTV ` U ) ) = ( U i^i Ring ) )
9 8 adantr
 |-  ( ( U e. V /\ X e. C ) -> ( Base ` ( RingCatALTV ` U ) ) = ( U i^i Ring ) )
10 4 9 eleqtrrd
 |-  ( ( U e. V /\ X e. C ) -> X e. ( Base ` ( RingCatALTV ` U ) ) )