Step |
Hyp |
Ref |
Expression |
1 |
|
srhmsubcALTV.s |
|- A. r e. S r e. Ring |
2 |
|
srhmsubcALTV.c |
|- C = ( U i^i S ) |
3 |
1 2
|
srhmsubclem1 |
|- ( X e. C -> X e. ( U i^i Ring ) ) |
4 |
3
|
adantl |
|- ( ( U e. V /\ X e. C ) -> X e. ( U i^i Ring ) ) |
5 |
|
eqid |
|- ( RingCatALTV ` U ) = ( RingCatALTV ` U ) |
6 |
|
eqid |
|- ( Base ` ( RingCatALTV ` U ) ) = ( Base ` ( RingCatALTV ` U ) ) |
7 |
|
id |
|- ( U e. V -> U e. V ) |
8 |
5 6 7
|
ringcbasALTV |
|- ( U e. V -> ( Base ` ( RingCatALTV ` U ) ) = ( U i^i Ring ) ) |
9 |
8
|
adantr |
|- ( ( U e. V /\ X e. C ) -> ( Base ` ( RingCatALTV ` U ) ) = ( U i^i Ring ) ) |
10 |
4 9
|
eleqtrrd |
|- ( ( U e. V /\ X e. C ) -> X e. ( Base ` ( RingCatALTV ` U ) ) ) |