Metamath Proof Explorer


Theorem srhmsubclem1

Description: Lemma 1 for srhmsubc . (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s
|- A. r e. S r e. Ring
srhmsubc.c
|- C = ( U i^i S )
Assertion srhmsubclem1
|- ( X e. C -> X e. ( U i^i Ring ) )

Proof

Step Hyp Ref Expression
1 srhmsubc.s
 |-  A. r e. S r e. Ring
2 srhmsubc.c
 |-  C = ( U i^i S )
3 eleq1
 |-  ( r = X -> ( r e. Ring <-> X e. Ring ) )
4 3 1 vtoclri
 |-  ( X e. S -> X e. Ring )
5 4 anim2i
 |-  ( ( X e. U /\ X e. S ) -> ( X e. U /\ X e. Ring ) )
6 2 elin2
 |-  ( X e. C <-> ( X e. U /\ X e. S ) )
7 elin
 |-  ( X e. ( U i^i Ring ) <-> ( X e. U /\ X e. Ring ) )
8 5 6 7 3imtr4i
 |-  ( X e. C -> X e. ( U i^i Ring ) )