Description: Lemma 1 for srhmsubc . (Contributed by AV, 19-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srhmsubc.s | |- A. r e. S r e. Ring |
|
srhmsubc.c | |- C = ( U i^i S ) |
||
Assertion | srhmsubclem1 | |- ( X e. C -> X e. ( U i^i Ring ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srhmsubc.s | |- A. r e. S r e. Ring |
|
2 | srhmsubc.c | |- C = ( U i^i S ) |
|
3 | eleq1 | |- ( r = X -> ( r e. Ring <-> X e. Ring ) ) |
|
4 | 3 1 | vtoclri | |- ( X e. S -> X e. Ring ) |
5 | 4 | anim2i | |- ( ( X e. U /\ X e. S ) -> ( X e. U /\ X e. Ring ) ) |
6 | 2 | elin2 | |- ( X e. C <-> ( X e. U /\ X e. S ) ) |
7 | elin | |- ( X e. ( U i^i Ring ) <-> ( X e. U /\ X e. Ring ) ) |
|
8 | 5 6 7 | 3imtr4i | |- ( X e. C -> X e. ( U i^i Ring ) ) |