Metamath Proof Explorer


Theorem srhmsubclem1

Description: Lemma 1 for srhmsubc . (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubc.c 𝐶 = ( 𝑈𝑆 )
Assertion srhmsubclem1 ( 𝑋𝐶𝑋 ∈ ( 𝑈 ∩ Ring ) )

Proof

Step Hyp Ref Expression
1 srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
2 srhmsubc.c 𝐶 = ( 𝑈𝑆 )
3 eleq1 ( 𝑟 = 𝑋 → ( 𝑟 ∈ Ring ↔ 𝑋 ∈ Ring ) )
4 3 1 vtoclri ( 𝑋𝑆𝑋 ∈ Ring )
5 4 anim2i ( ( 𝑋𝑈𝑋𝑆 ) → ( 𝑋𝑈𝑋 ∈ Ring ) )
6 2 elin2 ( 𝑋𝐶 ↔ ( 𝑋𝑈𝑋𝑆 ) )
7 elin ( 𝑋 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑋𝑈𝑋 ∈ Ring ) )
8 5 6 7 3imtr4i ( 𝑋𝐶𝑋 ∈ ( 𝑈 ∩ Ring ) )