Description: Lemma 1 for srhmsubc . (Contributed by AV, 19-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srhmsubc.s | ⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| srhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) | ||
| Assertion | srhmsubclem1 | ⊢ ( 𝑋 ∈ 𝐶 → 𝑋 ∈ ( 𝑈 ∩ Ring ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srhmsubc.s | ⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| 2 | srhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) | |
| 3 | eleq1 | ⊢ ( 𝑟 = 𝑋 → ( 𝑟 ∈ Ring ↔ 𝑋 ∈ Ring ) ) | |
| 4 | 3 1 | vtoclri | ⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ∈ Ring ) |
| 5 | 4 | anim2i | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring ) ) |
| 6 | 2 | elin2 | ⊢ ( 𝑋 ∈ 𝐶 ↔ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝑆 ) ) |
| 7 | elin | ⊢ ( 𝑋 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring ) ) | |
| 8 | 5 6 7 | 3imtr4i | ⊢ ( 𝑋 ∈ 𝐶 → 𝑋 ∈ ( 𝑈 ∩ Ring ) ) |