Metamath Proof Explorer


Theorem srhmsubclem1

Description: Lemma 1 for srhmsubc . (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s r S r Ring
srhmsubc.c C = U S
Assertion srhmsubclem1 X C X U Ring

Proof

Step Hyp Ref Expression
1 srhmsubc.s r S r Ring
2 srhmsubc.c C = U S
3 eleq1 r = X r Ring X Ring
4 3 1 vtoclri X S X Ring
5 4 anim2i X U X S X U X Ring
6 2 elin2 X C X U X S
7 elin X U Ring X U X Ring
8 5 6 7 3imtr4i X C X U Ring