Metamath Proof Explorer


Theorem srhmsubc

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s rSrRing
srhmsubc.c C=US
srhmsubc.j J=rC,sCrRingHoms
Assertion srhmsubc UVJSubcatRingCatU

Proof

Step Hyp Ref Expression
1 srhmsubc.s rSrRing
2 srhmsubc.c C=US
3 srhmsubc.j J=rC,sCrRingHoms
4 eleq1w r=xrRingxRing
5 4 1 vtoclri xSxRing
6 5 ssriv SRing
7 sslin SRingUSURing
8 6 7 mp1i UVUSURing
9 2 8 eqsstrid UVCURing
10 ssid xRingHomyxRingHomy
11 eqid RingCatU=RingCatU
12 eqid BaseRingCatU=BaseRingCatU
13 simpl UVxCyCUV
14 eqid HomRingCatU=HomRingCatU
15 1 2 srhmsubclem2 UVxCxBaseRingCatU
16 15 adantrr UVxCyCxBaseRingCatU
17 1 2 srhmsubclem2 UVyCyBaseRingCatU
18 17 adantrl UVxCyCyBaseRingCatU
19 11 12 13 14 16 18 ringchom UVxCyCxHomRingCatUy=xRingHomy
20 10 19 sseqtrrid UVxCyCxRingHomyxHomRingCatUy
21 3 a1i UVxCyCJ=rC,sCrRingHoms
22 oveq12 r=xs=yrRingHoms=xRingHomy
23 22 adantl UVxCyCr=xs=yrRingHoms=xRingHomy
24 simprl UVxCyCxC
25 simprr UVxCyCyC
26 ovexd UVxCyCxRingHomyV
27 21 23 24 25 26 ovmpod UVxCyCxJy=xRingHomy
28 eqid Hom𝑓RingCatU=Hom𝑓RingCatU
29 28 12 14 16 18 homfval UVxCyCxHom𝑓RingCatUy=xHomRingCatUy
30 20 27 29 3sstr4d UVxCyCxJyxHom𝑓RingCatUy
31 30 ralrimivva UVxCyCxJyxHom𝑓RingCatUy
32 ovex rRingHomsV
33 3 32 fnmpoi JFnC×C
34 33 a1i UVJFnC×C
35 28 12 homffn Hom𝑓RingCatUFnBaseRingCatU×BaseRingCatU
36 id UVUV
37 11 12 36 ringcbas UVBaseRingCatU=URing
38 37 eqcomd UVURing=BaseRingCatU
39 38 sqxpeqd UVURing×URing=BaseRingCatU×BaseRingCatU
40 39 fneq2d UVHom𝑓RingCatUFnURing×URingHom𝑓RingCatUFnBaseRingCatU×BaseRingCatU
41 35 40 mpbiri UVHom𝑓RingCatUFnURing×URing
42 inex1g UVURingV
43 34 41 42 isssc UVJcatHom𝑓RingCatUCURingxCyCxJyxHom𝑓RingCatUy
44 9 31 43 mpbir2and UVJcatHom𝑓RingCatU
45 2 elin2 xCxUxS
46 5 adantl xUxSxRing
47 45 46 sylbi xCxRing
48 47 adantl UVxCxRing
49 eqid Basex=Basex
50 49 idrhm xRingIBasexxRingHomx
51 48 50 syl UVxCIBasexxRingHomx
52 eqid IdRingCatU=IdRingCatU
53 simpl UVxCUV
54 11 12 52 53 15 49 ringcid UVxCIdRingCatUx=IBasex
55 3 a1i UVxCJ=rC,sCrRingHoms
56 oveq12 r=xs=xrRingHoms=xRingHomx
57 56 adantl UVxCr=xs=xrRingHoms=xRingHomx
58 simpr UVxCxC
59 ovexd UVxCxRingHomxV
60 55 57 58 58 59 ovmpod UVxCxJx=xRingHomx
61 51 54 60 3eltr4d UVxCIdRingCatUxxJx
62 eqid compRingCatU=compRingCatU
63 11 ringccat UVRingCatUCat
64 63 ad3antrrr UVxCyCzCfxJygyJzRingCatUCat
65 15 adantr UVxCyCzCxBaseRingCatU
66 65 adantr UVxCyCzCfxJygyJzxBaseRingCatU
67 17 ad2ant2r UVxCyCzCyBaseRingCatU
68 67 adantr UVxCyCzCfxJygyJzyBaseRingCatU
69 1 2 srhmsubclem2 UVzCzBaseRingCatU
70 69 ad2ant2rl UVxCyCzCzBaseRingCatU
71 70 adantr UVxCyCzCfxJygyJzzBaseRingCatU
72 53 adantr UVxCyCzCUV
73 simpl yCzCyC
74 58 73 anim12i UVxCyCzCxCyC
75 72 74 jca UVxCyCzCUVxCyC
76 1 2 3 srhmsubclem3 UVxCyCxJy=xHomRingCatUy
77 75 76 syl UVxCyCzCxJy=xHomRingCatUy
78 77 eleq2d UVxCyCzCfxJyfxHomRingCatUy
79 78 biimpcd fxJyUVxCyCzCfxHomRingCatUy
80 79 adantr fxJygyJzUVxCyCzCfxHomRingCatUy
81 80 impcom UVxCyCzCfxJygyJzfxHomRingCatUy
82 1 2 3 srhmsubclem3 UVyCzCyJz=yHomRingCatUz
83 82 adantlr UVxCyCzCyJz=yHomRingCatUz
84 83 eleq2d UVxCyCzCgyJzgyHomRingCatUz
85 84 biimpd UVxCyCzCgyJzgyHomRingCatUz
86 85 adantld UVxCyCzCfxJygyJzgyHomRingCatUz
87 86 imp UVxCyCzCfxJygyJzgyHomRingCatUz
88 12 14 62 64 66 68 71 81 87 catcocl UVxCyCzCfxJygyJzgxycompRingCatUzfxHomRingCatUz
89 11 12 72 14 65 70 ringchom UVxCyCzCxHomRingCatUz=xRingHomz
90 89 eqcomd UVxCyCzCxRingHomz=xHomRingCatUz
91 90 adantr UVxCyCzCfxJygyJzxRingHomz=xHomRingCatUz
92 88 91 eleqtrrd UVxCyCzCfxJygyJzgxycompRingCatUzfxRingHomz
93 3 a1i UVxCyCzCJ=rC,sCrRingHoms
94 oveq12 r=xs=zrRingHoms=xRingHomz
95 94 adantl UVxCyCzCr=xs=zrRingHoms=xRingHomz
96 58 adantr UVxCyCzCxC
97 simprr UVxCyCzCzC
98 ovexd UVxCyCzCxRingHomzV
99 93 95 96 97 98 ovmpod UVxCyCzCxJz=xRingHomz
100 99 adantr UVxCyCzCfxJygyJzxJz=xRingHomz
101 92 100 eleqtrrd UVxCyCzCfxJygyJzgxycompRingCatUzfxJz
102 101 ralrimivva UVxCyCzCfxJygyJzgxycompRingCatUzfxJz
103 102 ralrimivva UVxCyCzCfxJygyJzgxycompRingCatUzfxJz
104 61 103 jca UVxCIdRingCatUxxJxyCzCfxJygyJzgxycompRingCatUzfxJz
105 104 ralrimiva UVxCIdRingCatUxxJxyCzCfxJygyJzgxycompRingCatUzfxJz
106 28 52 62 63 34 issubc2 UVJSubcatRingCatUJcatHom𝑓RingCatUxCIdRingCatUxxJxyCzCfxJygyJzgxycompRingCatUzfxJz
107 44 105 106 mpbir2and UVJSubcatRingCatU