Metamath Proof Explorer


Theorem srhmsubclem3

Description: Lemma 3 for srhmsubc . (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s rSrRing
srhmsubc.c C=US
srhmsubc.j J=rC,sCrRingHoms
Assertion srhmsubclem3 UVXCYCXJY=XHomRingCatUY

Proof

Step Hyp Ref Expression
1 srhmsubc.s rSrRing
2 srhmsubc.c C=US
3 srhmsubc.j J=rC,sCrRingHoms
4 3 a1i UVXCYCJ=rC,sCrRingHoms
5 oveq12 r=Xs=YrRingHoms=XRingHomY
6 5 adantl UVXCYCr=Xs=YrRingHoms=XRingHomY
7 simpl XCYCXC
8 7 adantl UVXCYCXC
9 simpr XCYCYC
10 9 adantl UVXCYCYC
11 ovexd UVXCYCXRingHomYV
12 4 6 8 10 11 ovmpod UVXCYCXJY=XRingHomY
13 eqid RingCatU=RingCatU
14 eqid BaseRingCatU=BaseRingCatU
15 simpl UVXCYCUV
16 eqid HomRingCatU=HomRingCatU
17 1 2 srhmsubclem2 UVXCXBaseRingCatU
18 7 17 sylan2 UVXCYCXBaseRingCatU
19 1 2 srhmsubclem2 UVYCYBaseRingCatU
20 9 19 sylan2 UVXCYCYBaseRingCatU
21 13 14 15 16 18 20 ringchom UVXCYCXHomRingCatUY=XRingHomY
22 12 21 eqtr4d UVXCYCXJY=XHomRingCatUY