Step |
Hyp |
Ref |
Expression |
1 |
|
srhmsubc.s |
⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring |
2 |
|
srhmsubc.c |
⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) |
3 |
|
srhmsubc.j |
⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) |
4 |
3
|
a1i |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) ) |
5 |
|
oveq12 |
⊢ ( ( 𝑟 = 𝑋 ∧ 𝑠 = 𝑌 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑋 RingHom 𝑌 ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑟 = 𝑋 ∧ 𝑠 = 𝑌 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑋 RingHom 𝑌 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) |
8 |
7
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐶 ) |
9 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ∈ 𝐶 ) |
10 |
9
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ 𝐶 ) |
11 |
|
ovexd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 RingHom 𝑌 ) ∈ V ) |
12 |
4 6 8 10 11
|
ovmpod |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐽 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
13 |
|
eqid |
⊢ ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( Base ‘ ( RingCat ‘ 𝑈 ) ) |
15 |
|
simpl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑈 ∈ 𝑉 ) |
16 |
|
eqid |
⊢ ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( Hom ‘ ( RingCat ‘ 𝑈 ) ) |
17 |
1 2
|
srhmsubclem2 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
18 |
7 17
|
sylan2 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
19 |
1 2
|
srhmsubclem2 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
20 |
9 19
|
sylan2 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
21 |
13 14 15 16 18 20
|
ringchom |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
22 |
12 21
|
eqtr4d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐽 𝑌 ) = ( 𝑋 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑌 ) ) |