Metamath Proof Explorer


Theorem srhmsubclem2

Description: Lemma 2 for srhmsubc . (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubc.c 𝐶 = ( 𝑈𝑆 )
Assertion srhmsubclem2 ( ( 𝑈𝑉𝑋𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
2 srhmsubc.c 𝐶 = ( 𝑈𝑆 )
3 1 2 srhmsubclem1 ( 𝑋𝐶𝑋 ∈ ( 𝑈 ∩ Ring ) )
4 3 adantl ( ( 𝑈𝑉𝑋𝐶 ) → 𝑋 ∈ ( 𝑈 ∩ Ring ) )
5 eqid ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 )
6 eqid ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( Base ‘ ( RingCat ‘ 𝑈 ) )
7 id ( 𝑈𝑉𝑈𝑉 )
8 5 6 7 ringcbas ( 𝑈𝑉 → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) )
9 8 adantr ( ( 𝑈𝑉𝑋𝐶 ) → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) )
10 4 9 eleqtrrd ( ( 𝑈𝑉𝑋𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) )