Step |
Hyp |
Ref |
Expression |
1 |
|
srhmsubc.s |
⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring |
2 |
|
srhmsubc.c |
⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) |
3 |
1 2
|
srhmsubclem1 |
⊢ ( 𝑋 ∈ 𝐶 → 𝑋 ∈ ( 𝑈 ∩ Ring ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ ( 𝑈 ∩ Ring ) ) |
5 |
|
eqid |
⊢ ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 ) |
6 |
|
eqid |
⊢ ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( Base ‘ ( RingCat ‘ 𝑈 ) ) |
7 |
|
id |
⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉 ) |
8 |
5 6 7
|
ringcbas |
⊢ ( 𝑈 ∈ 𝑉 → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) ) |
10 |
4 9
|
eleqtrrd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |