Metamath Proof Explorer


Theorem srhmsubclem2

Description: Lemma 2 for srhmsubc . (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s
|- A. r e. S r e. Ring
srhmsubc.c
|- C = ( U i^i S )
Assertion srhmsubclem2
|- ( ( U e. V /\ X e. C ) -> X e. ( Base ` ( RingCat ` U ) ) )

Proof

Step Hyp Ref Expression
1 srhmsubc.s
 |-  A. r e. S r e. Ring
2 srhmsubc.c
 |-  C = ( U i^i S )
3 1 2 srhmsubclem1
 |-  ( X e. C -> X e. ( U i^i Ring ) )
4 3 adantl
 |-  ( ( U e. V /\ X e. C ) -> X e. ( U i^i Ring ) )
5 eqid
 |-  ( RingCat ` U ) = ( RingCat ` U )
6 eqid
 |-  ( Base ` ( RingCat ` U ) ) = ( Base ` ( RingCat ` U ) )
7 id
 |-  ( U e. V -> U e. V )
8 5 6 7 ringcbas
 |-  ( U e. V -> ( Base ` ( RingCat ` U ) ) = ( U i^i Ring ) )
9 8 adantr
 |-  ( ( U e. V /\ X e. C ) -> ( Base ` ( RingCat ` U ) ) = ( U i^i Ring ) )
10 4 9 eleqtrrd
 |-  ( ( U e. V /\ X e. C ) -> X e. ( Base ` ( RingCat ` U ) ) )