Step |
Hyp |
Ref |
Expression |
1 |
|
ringcbas.c |
|- C = ( RingCat ` U ) |
2 |
|
ringcbas.b |
|- B = ( Base ` C ) |
3 |
|
ringcbas.u |
|- ( ph -> U e. V ) |
4 |
|
eqidd |
|- ( ph -> ( U i^i Ring ) = ( U i^i Ring ) ) |
5 |
|
eqidd |
|- ( ph -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) = ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) |
6 |
1 3 4 5
|
ringcval |
|- ( ph -> C = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) |
7 |
6
|
fveq2d |
|- ( ph -> ( Base ` C ) = ( Base ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) ) |
8 |
2
|
a1i |
|- ( ph -> B = ( Base ` C ) ) |
9 |
|
eqid |
|- ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) |
10 |
|
eqid |
|- ( Base ` ( ExtStrCat ` U ) ) = ( Base ` ( ExtStrCat ` U ) ) |
11 |
|
fvexd |
|- ( ph -> ( ExtStrCat ` U ) e. _V ) |
12 |
4 5
|
rhmresfn |
|- ( ph -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) Fn ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) |
13 |
|
inss1 |
|- ( U i^i Ring ) C_ U |
14 |
|
eqid |
|- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
15 |
14 3
|
estrcbas |
|- ( ph -> U = ( Base ` ( ExtStrCat ` U ) ) ) |
16 |
13 15
|
sseqtrid |
|- ( ph -> ( U i^i Ring ) C_ ( Base ` ( ExtStrCat ` U ) ) ) |
17 |
9 10 11 12 16
|
rescbas |
|- ( ph -> ( U i^i Ring ) = ( Base ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) ) |
18 |
7 8 17
|
3eqtr4d |
|- ( ph -> B = ( U i^i Ring ) ) |