Metamath Proof Explorer


Theorem ringcbas

Description: Set of objects of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses ringcbas.c C = RingCat U
ringcbas.b B = Base C
ringcbas.u φ U V
Assertion ringcbas φ B = U Ring

Proof

Step Hyp Ref Expression
1 ringcbas.c C = RingCat U
2 ringcbas.b B = Base C
3 ringcbas.u φ U V
4 eqidd φ U Ring = U Ring
5 eqidd φ RingHom U Ring × U Ring = RingHom U Ring × U Ring
6 1 3 4 5 ringcval φ C = ExtStrCat U cat RingHom U Ring × U Ring
7 6 fveq2d φ Base C = Base ExtStrCat U cat RingHom U Ring × U Ring
8 2 a1i φ B = Base C
9 eqid ExtStrCat U cat RingHom U Ring × U Ring = ExtStrCat U cat RingHom U Ring × U Ring
10 eqid Base ExtStrCat U = Base ExtStrCat U
11 fvexd φ ExtStrCat U V
12 4 5 rhmresfn φ RingHom U Ring × U Ring Fn U Ring × U Ring
13 inss1 U Ring U
14 eqid ExtStrCat U = ExtStrCat U
15 14 3 estrcbas φ U = Base ExtStrCat U
16 13 15 sseqtrid φ U Ring Base ExtStrCat U
17 9 10 11 12 16 rescbas φ U Ring = Base ExtStrCat U cat RingHom U Ring × U Ring
18 7 8 17 3eqtr4d φ B = U Ring