Metamath Proof Explorer


Theorem ringcval

Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses ringcval.c C=RingCatU
ringcval.u φUV
ringcval.b φB=URing
ringcval.h φH=RingHomB×B
Assertion ringcval φC=ExtStrCatUcatH

Proof

Step Hyp Ref Expression
1 ringcval.c C=RingCatU
2 ringcval.u φUV
3 ringcval.b φB=URing
4 ringcval.h φH=RingHomB×B
5 df-ringc RingCat=uVExtStrCatucatRingHomuRing×uRing
6 fveq2 u=UExtStrCatu=ExtStrCatU
7 6 adantl φu=UExtStrCatu=ExtStrCatU
8 ineq1 u=UuRing=URing
9 8 sqxpeqd u=UuRing×uRing=URing×URing
10 3 sqxpeqd φB×B=URing×URing
11 10 eqcomd φURing×URing=B×B
12 9 11 sylan9eqr φu=UuRing×uRing=B×B
13 12 reseq2d φu=URingHomuRing×uRing=RingHomB×B
14 4 eqcomd φRingHomB×B=H
15 14 adantr φu=URingHomB×B=H
16 13 15 eqtrd φu=URingHomuRing×uRing=H
17 7 16 oveq12d φu=UExtStrCatucatRingHomuRing×uRing=ExtStrCatUcatH
18 2 elexd φUV
19 ovexd φExtStrCatUcatHV
20 5 17 18 19 fvmptd2 φRingCatU=ExtStrCatUcatH
21 1 20 eqtrid φC=ExtStrCatUcatH